
Signature V2 Plugin External Document
version: 1.11.5

Disclaimer: this document is for the PLUGIN architecture

How to Read This Document?
Client Parameters

Android
Extract your SHA1 Certificate
Fingerprint
Extract your Internal App Sharing Certificate
Fingerprint
Extract your Google Play App Signing Certificate
Fingerprint
Extract your Huawei AppGallery App Signing Certificate
Fingerprint

iOS
Integration Guide

Android
iOS

Troubleshooting: Failed to verify bitcode
Error
Troubleshooting: Code Signing failed

React Native
Cordova
Xamarin
Unity

Troubleshooting: “Unknown CPU Architecture in AdjustSigSdk.a”
Error
On Enforcing the SDK Signature in the
Dashboard
On Disabling/Enabling Signing For
Testing
Plugin -> Plugin Library Update
Guide
Verification

Step 1: Using sig_doctor
Usage

Step 2: Device Preparation
Step 3: App Generation
Step 4A: Native Android App
Step 4B: Native iOS App
Step 4C: React Native Android
app
Step 4D: React Native iOS App
Step 4E: Unity Android App
Step 4F: Unity iOS App
Step 4G: Xamarin Android App
Step 4H: Cordova Android App
Step 4I: Cordova iOS App

On Play Store Warnings
Contact

How to Read This Document?
If you're a new client to this library:

i. Read the Client Parameters section
ii. Send those parameters to your Account Manager
iii. They will respond to you with the library
iv. Run through the Integration Guide section

based on your platform

v. Finally, verify your integration with the

Verification section

If you just want to integrate the library:
i. Read the Integration Guide section based

on your platform
ii. Finally, verify your integration with the

Verification section
If you just want to verify the library's integration

i. Read the Verification section
If you are an existing user of this library, and

i. Are using the plugin version of this library and wish to

update to a newer version of the library, please refer to the

Plugin -> Plugin Library Update Guide

Client Parameters

Android

To get started with the beta, Adjust needs three parameters from you. Apart from the app token, these parameters are public
knowledge.

We require this information because every library is custom made; no two libraries are the same. Because of this, the library
needs to perform some checks on the basic package and certificate fingerprint to be absolutely sure that the library is running
on the app it was designed for.

Google servers, along with any device that downloads the app, will check your app's signing certificate fingerprint.

The three parameters we need are:

Package name (to locate, look at the Google Play Store page link of your app)
Should look similar to 'com.adjust.sdk'

Adjust app token
Provided by Adjust and should be easy for developer to find

SHA1 Signing certificate fingerprint(s) (use the keytool command line tool shipped with the Android SDK from Google)

Extract your SHA1 Certificate Fingerprint

Find the .jks keystore file you use to sign the release version of your app. It is very important to use the same keystore you
would use to publish the release version of your app to the Google Play Store.

Run the following command:

 $ keytool -list -v -keystore <location/of/your/key.jks> -alias YOUR_KEY_ALIAS

Make sure to replace the information in the <> brackets with your own information. The developer should know the keystore
alias, the location of the keystore and the keystore password. The above command will prompt you to enter your keystore
password; make sure to have it handy.

The command output should look similar to this:

Alias name: Key0

Creation date: May 15, 2018

Entry type: PrivateKeyEntry

Certificate chain length: 1

Certificate[1]:

Owner: CN=aaaa

Issuer: CN=aaaa

Serial number: 642f1b62

Valid from: Tue May 15 09:46:06 CEST 2018 until: Sat May 09 09:46:06 CEST 2043

Certificate fingerprints:

MD5: E7:88:9F:8C:9D:F4:14:C1:CF:E8:4C:97:F3:F2:3A:E3

SHA1: C4:BD:07:91:BC:09:F8:B6:15:CD:BC:A3:3F:BC:68:8B:C2:EF:4F:F5

SHA256: 55:FB:97:0F:46:0F:94:EC:07:EA:01:69:50:5A:20:3F:A0:91:60:A4:F1:33:58:EA:76:DC:54:9E:A7:6A:B9:1A

Signature algorithm name: SHA256withRSA

Subject Public Key Algorithm: 2048-bit RSA key

Version: 3

Please send us the SHA1 fingerprint. In the code snippet above, it is:
 C4:BD:07:91:BC:09:F8:B6:15:CD:BC:A3:3F:BC:68:8B:C2:EF:4F:F5 .

Your output will vary.

If you are using Google Play Internal App Sharing, read the relevant section below.

If you are using Google Play App Signing, read the relevant section below.

Extract your Internal App Sharing Certificate Fingerprint

If you are using Google Play Internal App Sharing, we'll need both your organization's SHA-1 certificate fingerprint (see
section above) and your “Internal test certificate fingerprint” to make sure the integration is successful during testing and
production.

Please complete the following steps to extract the fingerprints:

1. Navigate to the Google Play Console and log in
2. Select the application to sign
3. Select Release Management –> App Releases -> Manage internal app sharing -> App certificates
4. Copy the SHA-1 certificate fingerprint from there, including the one from your organization's keystore that you used to sign

your app

Extract your Google Play App Signing Certificate Fingerprint

If you are using Google Play App Signing, we'll need both your organization's SHA-1 certificate fingerprint (see relevant
section above) and your “App signing certificate fingerprint” to make sure the integration is successful during testing and
production.

Please complete the following steps to extract the fingerprints:

1. Navigate to the Google Play Console and log in
2. Select the application to sign

https://support.google.com/googleplay/android-developer/answer/9303479?hl=en
https://support.google.com/googleplay/android-developer/answer/7384423?hl=en
https://support.google.com/googleplay/android-developer/answer/9303479?hl=en
https://support.google.com/googleplay/android-developer/answer/7384423?hl=en

3. Select Release Management –> App Signing
4. Copy the SHA-1 certificate fingerprint from both sections

Extract your Huawei AppGallery App Signing Certificate Fingerprint

If you are using Huawei AppGallery App Signing, we'll need both your organization's SHA-1 certificate fingerprint (see
relevant section above) and your “App signing certificate fingerprint” to make sure the integration is successful during
testing and production.

You'll find the SHA-1 app signing certificate fingerprint if you follow the steps outlined in "Question 6" of this link from Huawei's
FAQ: https://developer.huawei.com/consumer/en/doc/development/AppGallery-connect-Guides/agc-app_bundle_faq

iOS

The parameters we'll need are:

Adjust app token
Bundle ID

Integration Guide
Our new SDK Signature solution – Signature V2 – is a drop-in plugin compatible with our public SDKs. Signature V2 is easier to
implement and offers more security than its predecessor; here are the most significant changes:

It contains encryption algorithms which secure communication with our servers.
We utilize fortified obfuscation to combat network sniffers and analysis.
Each library is customized; secrets and randomized encryption parameters are unique to your app and your app alone.
We use public key encryption to prevent malicious tampering.

Signature V2 effectively deprecates Signature V1 (our 'app secret' solution). For this reason, we strongly recommend that if
you have used the app secrets solution, you start transitioning to this solution and, when you are sure that the vast majority
of your traffic is from Signature V2 (two weeks after full roll out of the new app version to the store), you can deactivate your
Signature V1 secrets from the dashboard.

NOTE: As with Signature V1, if you are utilising Adjust's FPS, you may still receive information on rejections with Signature V2
through callbacks.

NOTE: Prior to v4.21.1 (for all platforms), Signature V2 library was bundled with the Adjust SDK. This meant that the
development team could not fetch the latest updates from the SDK and would have to wait until Adjust released a Signature V2
update including the necessary changes.

https://developer.huawei.com/consumer/en/doc/development/AppGallery-connect-Guides/agc-app_bundle
https://developer.huawei.com/consumer/en/doc/development/AppGallery-connect-Guides/agc-app_bundle_faq

Android

Signature V2 is non-interactive. This means that, apart from integrating the library in the project, there is no need for any
functionality to be added or removed in the client's codebase.

This also means that there are no changes to the public SDK's functionality whatsoever: all events, sessions callbacks,
attribution and all other SDK requests and functionality will proceed normally just as expected.

These are the minimum requirements for the library (the library will not function without them):

Android API >= 18

NOTE: For the library to function Android Adjust SDK >= 4.21.1 is needed.

NOTE: If you are using ProGuard, you must use exactly the same Proguard configuration for Signature V2 as you use for the
Adjust SDK.

To integrate the library:

1. Create a new libs directory inside your app module directory.
2. Copy the provided AAR library under the created libs directory.

NOTE: We'll use the name adjust-lib.aar to refer to your custom library for the rest of this section -- kindly replace
with the name used in the deliverable you received.

3. Open your app-level build.gradle file and add the following, in their respective sections:

android {

 defaultConfig {

 ndk.abiFilters 'armeabi-v7a','arm64-v8a','x86','x86_64'

 }

}

dependencies {

 implementation files('libs/adjust-lib.aar')

}

4. Click sync project with Gradle files .

iOS

Signature V2 is non-interactive. This means that, apart from integrating the library in the project, there is no need for any
functionality to be added or removed in the client's codebase.

This also means that there are no changes to the public SDK's functionality whatsoever: all events, sessions callbacks,
attribution and all other SDK requests and functionality will proceed normally just as expected.

NOTE: For the library to function iOS Adjust SDK >= 4.21.1 is needed.

Dynamic Framework Integration

NOTE: We supply both a dynamic universal framework and a dynamic XCFramework. The steps to integrate either are
identical. For documentation simplicity, I'll refer to the usage of the XCFramework below.

NOTE: We'll use the name AdjustSigSdk to refer to your custom library for the rest of this section -- kindly replace with the
name used in the deliverable you received.

1. Copy the dynamic AdjustSigSdk.xcframework file to your project's directory
2. In Xcode, select your project in the Project Navigator
3. In the left-hand side of the main view, select your target

For XCode >= 11:
i. Go to the General tab, expand the Frameworks, Libraries and embedded Content group.
ii. At the bottom of that section, select the + button

3. Click Add Other > Add Files , navigate to where you’ve put AdjustSigSdk.xcframework in your project and select it.

4. After adding, make sure to select Embed & Sign for AdjustSigSdk.xcframework .

For XCode < 11:

NOTE: You can only use the universal dynamic framework for XCode < 11, not the XCFramework.

i. In the Build Phases tab, expand the Link Binary with Libraries group
ii. At the bottom of that section, select the + button.
iii. Add AdjustSigSdk.framework and set it as “optional”. Make sure to choose Add Other... and select the

 AdjustSigSdk.framework file, not the symbolic link provided by Xcode's framework selection pop-up.
iv. Go to the General tab, expand the Embedded Binaries group.
v. If the library is not already there, click Add Other... and select AdjustSigSdk.framework. Make sure to choose

 Add Other... and select the AdjustSigSdk.framework file, not the symbolic link provided by Xcode's framework
selection pop-up.

vi. You'll see a dialog with the title Choose options for adding these files , make sure to tick Copy items if
needed . This will also add AdjustSigSdk.framework to the project navigator.

Static Framework Integration

We don't recommend you use static frameworks since a dynamic one is much better and lighter on your app. That being said, if
you use the static framework, be sure to include -force_load

$(PROJECT_DIR)/$(PROJECT_NAME)/AdjustSigSdk.framework/AdjustSigSdk in your XCode project, under "Other Linker Flags".
If you don't know how to do this, please don't use a static framework and use a dynamic framework (instructions above).

Troubleshooting: Failed to verify bitcode Error

If you get an error such as the one below:

Failed to verify bitcode in

AdjustSigSdk.framework/AdjustSigSdk:

error: Cannot extract bundle from

/var/folders/qy/ylq4b9750lg6x21scz02hq5c0000gn/T/IDEDistributionOptionThinning.Xnl/Payload/AdjustExample-iOS.

You are using a dynamic non xcframework and will need to strip the binaries for the i386 and x86_64 architectures:

1. Select your project in the Project Navigator
2. In the left-hand side of the main view, select your target
3. Go to the Build Phases tab, press the + button and choose New Run Script Phase
4. A new Run Script will appear; name it “Strip Adjust Framework” and place it below your “Embed Frameworks” tab in

“Build Phases”
5. Copy the code snippet in this link to the input area
6. Clean and rebuild

Alternatively, and if your build process allows, kindly consider switching to the dynamic xcframework.

Troubleshooting: Code Signing failed

This can happen if you included the “Strip Adjust Framework” run script (see section above) and misplaced the “Embed
Frameworks” tab in “Build Phases”.

The correct order of “Build Phases” should look like this (other phases can go in the middle of those):

Dependencies

Run Script

Compile Sources

Link Binary with Libraries

Copy Bundle Resources

Embed Pods Frameworks

Embed Frameworks

Strip Adjust Framework

If you added the above “Strip Adjust Framework” run script to your build phases, you should place “Embed Frameworks”

React Native

Signature V2 is non-interactive. This means that, apart from integrating the library in the project, there is no need for any
functionality to be added or removed in the client's codebase.

This also means that there are no changes to the public SDK's functionality whatsoever: all events, sessions callbacks,
attribution and all other SDK requests and functionality will proceed normally just as expected.

These are the minimum requirements for the library (the library will not function without them):

If you're using Android

https://pastebin.com/TWAh5tAW

Android API >= 18
Android Adjust SDK >= 4.21.1

If you're using iOS
iOS Adjust SDK >= 4.21.1

To integrate Signature V2 for React Native, first integrate the Adjust SDK following the steps in the Adjust SDK documentation.
Signature V2 requires the Adjust SDK to be present.

Once the Adjust SDK is integrated, you can integrate Signature V2 for React Native by following the native Android and iOS
integration steps listed previously in this document.

To be very clear: for this library, we only supply the native libraries, not a react native package, since the latter is not needed.
There are no client-facing API methods for this library. Adjust SDK knows what to do with the native library if it finds it in the
app, without any needed addition to client code.

Cordova

Signature V2 is non-interactive. This means that, apart from integrating the library in the project, there is no need for any
functionality to be added or removed in the client's codebase.

This also means that there are no changes to the public SDK's functionality whatsoever: all events, sessions callbacks,
attribution and all other SDK requests and functionality will proceed normally just as expected.

These are the minimum requirements for the library (the library will not function without them):

If you're using Android
Android API >= 18
Android Adjust SDK >= 4.21.1

If you're using iOS
iOS Adjust SDK >= 4.21.1

NOTE: If you are using ProGuard, you must use exactly the same Proguard configuration for Signature V2 as you use for the
Adjust SDK.

As for the actual integration steps:

1. Make a directory in your project and call it ext
2. Unzip the plugin library there, you should now have one directory inside ext , which is called cordova-adjust-sig
3. Run cordova plugin add ext/cordova-adjust-sig . Now, download the Adjust SDK through cordova plugin add

com.adjust.sdk , or by any means through the public README.
4. Open the iOS Xcode project in platforms/ios with Xcode. Select your project in the Project Navigator. In the left hand

side of the main view, select your project.
5. Click the tab Build Settings
6. Double click Other Linker Flags
7. Click +
8. Paste the following: -force_load

$(PROJECT_DIR)/$(PROJECT_NAME)/Plugins/com.adjust.sdk.sig/AdjustSigSdk.framework/AdjustSigSdk

Xamarin

Signature V2 is non-interactive. This means that, apart from integrating the library in the project, there is no need for any
functionality to be added or removed in the client's codebase.

https://github.com/adjust/cordova_sdk/

This also means that there are no changes to the public SDK's functionality whatsoever: all events, sessions callbacks,
attribution and all other SDK requests and functionality will proceed normally just as expected.

These are the minimum requirements for the library (the library will not function without them):

If you're using Android
Android API >= 18
Android Adjust SDK >= 4.21.1

If you're using iOS
iOS Adjust SDK >= 4.21.1

NOTE: If you are using ProGuard, you must use exactly the same Proguard configuration for Signature V2 as you use for the
Adjust SDK.

As for the actual integration steps:

Android:
i. Copy the received AdjustSigSdk.Xamarin.Android.dll file under your Android project (e.g.
 MyProject/MyProject.Android/AdjustSigSdk.Xamarin.Android.dll)

ii. In the Solution Explorer, right-click on the project name and select Add > Reference...
iii. In the .Net Assembly tab, click Browse... to select the copied file and click OK

iOS:
i. Copy the received libAdjustSigSdk.iOS.a file under your iOS project (e.g.
 MyProject/MyProject.iOS/libAdjustSigSdk.iOS.a)

ii. In the Solution Explorer, right-click on the project name and select Add > Add Native Reference to select the
copied file

iii. Under Native References , right-click libAdjustSigSdk.iOS and select Properties
Tick Force Load
Add to Linker Flags the following -L$(ProjectDir)

Unity

Signature V2 is non-interactive. This means that, apart from integrating the library in the project, there is no need for any
functionality to be added or removed in the client's codebase.

This also means that there are no changes to the public SDK's functionality whatsoever: all events, sessions callbacks,
attribution and all other SDK requests and functionality will proceed normally just as expected.

These are the minimum requirements for the library (the library will not function without them):

If you're using Android
Android API >= 18
Android Adjust SDK >= 4.21.1

If you're using iOS
iOS Adjust SDK >= 4.21.1 (recommended >=4.32.1, which fixes common integration issues)

NOTE: If you are using ProGuard, you must use exactly the same Proguard configuration for Signature V2 as you use for the
Adjust SDK.

As for the actual integration steps:

1. Drop the .aar file in Assets/Adjust/Android
2. Drop the .a file in Assets/Adjust/iOS
3. If you're running Adjust Unity SDK 4.23.1 and above, the integrated post-build process will take care of the rest.
4. If you're running Adjust Unity SDK lower than 4.23.1, do the following:

i. Open your Unity iOS Xcode project with Xcode.
ii. Select your project in the Project Navigator.
iii. In the left hand side of the main view, select your project.

Click the tab Build Settings
Double click Other Linker Flags
Click +
Paste the following: -force_load $(PROJECT_DIR)/Libraries/Adjust/iOS/AdjustSigSdk.a

Troubleshooting: “Unknown CPU Architecture in AdjustSigSdk.a” Error

Unity Editor 2018 and above sometimes reads the Adjust iOS static library AdjustSigSdk.a as supported by “all architectures”
and not just for iOS .

Select the AdjustSigSdk.a file in Assets/Adjust/iOS as shown below:

Now, toggle off Any Platform and select iOS platform as shown below:

On Enforcing the SDK Signature in the Dashboard
See this page, please.

NOTE: While the signature is not "enforced" within the dashboard settings, all installs will be accepted, including those that
carry no signature or an invalid signature. Once you "enforce" the Signature, Adjust servers will start rejecting all installs that do
not carry a valid signature. Therefore, it's crucial to ensure that the Enforce toggle is set to ON once the vast majority of your
incoming install requests originate from the app version containing Signature V2.

On Disabling Signing For Testing
Signing is enabled by default. That being said, sometimes during unit tests, you might want to disable signing inside your test
suite. If you disable signing, your Adjust requests will not be signed. Below is how you can do that.

To repeat, please make sure to only use this feature in your test suite and not in production.

IMPORTANT NOTE: Enforce SDK Signature toggle in Adjust Dashboard does affect Signature V2. If disableSigning() is
called and Enforce SDK Signature is toggled ON, all traffic will be rejected regardless of whether the environment is set to

https://help.adjust.com/fraud-solutions/sdk-signature#enforce-sdk-signature

 SANDBOX or otherwise.

Android:

// Make sure you're on SANDBOX mode when testing

AdjustConfig config = new AdjustConfig(this, appToken, AdjustConfig.ENVIRONMENT_SANDBOX);

AdjustFactory.disableSigning()

iOS:

// Make sure you're in SANDBOX mode when testing

ADJConfig*adjustConfig = [ADJConfig configWithAppToken:yourAppToken environment:ADJEnvironmentSandbox];

[ADJAdjustFactory disableSigning]

Plugin -> Plugin Library Update Guide
Upon wishing to update to a newer version of the Signature V2 library (updates recommended every six (6) months), kindly do
the below:

1. Request a new Signature V2 library for the frameworks and platforms interested from your Account Manager
2. Upon receiving the new Signature V2 library, kindly consult the documentation bundled with the Signature V2 library
3. To avoid any issues, fully remove the previous Signature V2 library from your app
4. Follow the integration and verification guide as outlined in the attached documentation of the new Signature V2 library

received

Verification
Testing the new SDK solution is a bit different than testing the regular Adjust SDK. Please follow the steps below to confirm that
the integration was successful.

Step 1: Using sig_doctor

 sig_doctor is a standalone tool to verify a successful Signature V2 integration. It is bundled in the Signature V2 zip file that
you received.

There's a sig_doctor binary for all three major operating systems (Windows, Macos, and Linux). Furthermore, it is meant to
test both iOS IPAs/frameworks and Android APKs/AARs, for all supported cross-platforms as well (Unity, Cordova, etc.)

Dependencies

The binary is compiled statically, so there're no dependencies.

Usage

For Android: Build a release APK, made with your release keystore.
This should be the same exact build you would send to the app store, right before publishing.
If you're using Android App Bundles, the process is identical to that of generating an APK. Please test with your
release APK, not AAB. It is furthermore possible to use bundletool to generate an APK out of an AAB file, while
supplying --mode=universal also as an argument.

https://developer.android.com/studio/command-line/bundletool
https://developer.android.com/studio/command-line/bundletool#generate_apks

For iOS: Build an IPA (doesn't matter if it is development , adhoc or enterprise).
Double-click on the adjust_sig_doctor binary based on your platform (Windows, OSX, Linux).
Follow the instructions in the dialog box.

Using the CLI

 sig_doctor is also a CLI tool. Just run it with -h to show the help.

Step 2: Device Preparation

1. Use a physical device and not an emulator or simulator
2. Fully delete the app from the device
3. Make sure the device is "forgotten". You can do that either by using Testing Console or by visiting the following URL in a

browser:
For Android: http://app.adjust.com/forget_device?app_token={yourAppToken}&gps_adid={gpsAdidValue}

Replace yourAppToken and gps_adid accordingly
For iOS: http://app.adjust.com/forget_device?app_token={yourAppToken}&idfa={idfaValue}

Replace yourAppToken and idfaValue accordingly
4. Connect the device to your development machine
5. Lastly, and for testing purposes, the device's Advertising ID is needed. To retrieve it, the Adjust Insights app (Android | iOS)

can be used to extract said identifier

Step 3: App Generation

NOTE: Using the library in a debug environment (inside either Android Studio or Xcode) will trigger the library's detection
mechanism and will flag the install as 'untrusted'. You must conduct the test with a packaged app. For Android, this means
signing the APK with a release keystore, then installing it on a real device. For iOS, this means archiving the project and
generating a 'Development' IPA, which you should install on a real device.

Step 4A: Native Android App

Build a release version of the app and sign it with the same keystore used to generate the SHA1 certificate fingerprint you
sent to Adjust.
Install your app through ADB on the device your prepared (see above).
Run it so that an install is sent to Adjust servers.
Use Testing Console along with your device's Google Advertising ID or IDFA to validate that
 SignatureVerificationResult is Valid Signature

NOTE: if the SignatureVerificationResult is anything but 'Valid Signature', please do not publish the app. Contact your
Account Manager / Sales Engineer. We'll need to take a look at your integration and investigate further.

NOTE: Using the library in a debug environment (inside either Android Studio or Xcode) will trigger the library's detection
mechanism and will flag the install as 'untrusted'. You must conduct the test with a packaged app. For Android, this means
signing the APK with a release keystore, then installing it on a real device. For iOS, this means archiving the project and
generating a 'development' IPA, which you should install on a real device.

Step 4B: Native iOS App

The steps required are:

1. Archive a development version of your app as an IPA file
2. Sideload your archived app through Xcode

https://play.google.com/store/apps/details?id=com.adjust.insights&hl=en
https://itunes.apple.com/us/app/adjust-insights/id1125517808?mt=8
https://docs.adjust.com/en/testing-console/

In detail:

Select Generic iOS Device from the device selection drop-down menu

(you'll find it to the right of the debug and stop icons in the main
toolbar).

Click Product → Clean Build Folder (or Clean) in your Xcode toolbar.

Click Product → Archive in your Xcode toolbar.

Select the first entry and:
If you have Xcode < 10, click Export
If you have Xcode \>= 10, click Distribute App
Choose Development and continue

NOTE: if you receive a Failed to verify bitcode error, please refer to this troubleshooting section in this document in
the “iOS Integration Guide” section.

You'll see the Development distribution options dialog menu; keep all of the options as-is, then click Next on this and
the following menu
You should receive a pop-up like this:

Click Export and save the archive
Insert a physical iOS device through your USB port
Click Windows → Devices and Simulators in the Xcode toolbar
You should see your test device; click the + icon at the bottom of 'Installed Apps' and select the .ipa file from the
directory you archived
Congratulations, you sideloaded your app through Xcode! Run the app from the physical iOS device and check Test
Console with the device's IDFA to find out if the Signature V2 integration was successful.
You can also view the device logs, either from the Devices and Simulators window or through MacOS's Console app,
which comes pre-installed with MacOS.

Use Testing Console along with your device's Google Advertising ID or IDFA to validate that SignatureVerificationResult is
 Valid Signature

NOTE: If the SignatureVerificationResult is anything but 'Valid Signature', please do not publish the app. Contact your
Account Manager / Sales Engineer. We'll need to take a look at your integration and investigate further.

NOTE: Using the library in a debug environment (inside either Android Studio or Xcode) will trigger the library's detection
mechanism and will flag the install as 'untrusted'. You must conduct the test with a packaged app. For Android, this means
signing the APK with a release keystore, then installing it on a real device. For iOS, this means archiving the project and
generating a 'development' IPA, which you should install on a real device.

Step 4C: React Native Android app

Follow the same steps as in Section 4A. You must also run react-native bundle in order to build the Javascript layer for offline
use. Run the following command and substitute the '–entry-file' and '–assets-dest' parameters with their counterparts in your
project:

$ react-native bundle --platform android --dev false --entry-file

index.js --bundle-output

android/app/src/main/assets/index.android.bundle --assets-dest
android/app/src/main/res

The final output should look similar to this:

https://docs.adjust.com/en/testing-console/
https://facebook.github.io/react-native/docs/understanding-cli

NOTE: If the attribution response is 'untrusted', please stop where you are in the process. Do not publish the app, and contact
your Account Manager. We'll need to take a look at your integration and investigate further.

If this is the case, please provide us with your test device's Google Advertising ID (Android) or IDFA (iOS). We'll use it to debug
the install. Use our Adjust Insights app (Android | iOS) to extract the device's Google Advertising ID.

Step 4D: React Native iOS App

Follow the same steps as in Section 4B.

NOTE: if the attribution response is 'untrusted', please stop where you are in the process. Do not publish the app, and contact
the Adjust Mobile Security Team. We'll need to take a look at your integration and investigate further.

If this is the case, please provide us with your test device's Google Advertising ID (Android) or IDFA (iOS). We'll use it to debug
the install. Use our Adjust Insights app (Android | iOS) to extract the device's IDFA.

Step 4E: Unity Android App

Follow the same steps as in Section 4A.

NOTE: if the attribution response is 'untrusted', please stop where you are in the process. Do not publish the app, and contact
the Adjust Mobile Security Team. We'll need to take a look at your integration and investigate further.

If this is the case, please provide us with your test device's Google Advertising ID (Android) or IDFA (iOS). We'll use it to debug
the install. Use our Adjust Insights app (Android | iOS) to extract the device's Google Advertising ID.

Step 4F: Unity iOS App

Follow the same steps as in Section 4B.

NOTE: if the attribution response is 'untrusted', please stop where you are in the process. Do not publish the app, and contact
the Adjust Mobile Security Team. We'll need to take a look at your integration and investigate further.

If this is the case, please provide us with your test device's Google Advertising ID (Android) or IDFA (iOS). We'll use it to debug
the install. Use our Adjust Insights app (Android | iOS) to extract the device's IDFA.

Step 4G: Xamarin Android App

Follow the same steps as in Section 4A.

NOTE: if the attribution response is 'untrusted', please stop where you are in the process. Do not publish the app, and contact
the Adjust Mobile Security Team. We'll need to take a look at your integration and investigate further.

If this is the case, please provide us with your test device's Google Advertising ID (Android) or IDFA (iOS). We'll use it to debug
the install. Use our Adjust Insights app (Android | iOS) to extract the device's Google Advertising ID.

Step 4H: Cordova Android App

The same steps in Section 4A apply.

NOTE: if the attribution response is 'untrusted', please stop where you are in the process. Do not publish the app, and contact
the Adjust Mobile Security Team. We'll need to take a look at your integration and investigate further.

https://play.google.com/store/apps/details?id=com.adjust.insights&hl=en
https://itunes.apple.com/us/app/adjust-insights/id1125517808?mt=8
https://play.google.com/store/apps/details?id=com.adjust.insights&hl=en
https://itunes.apple.com/us/app/adjust-insights/id1125517808?mt=8
https://play.google.com/store/apps/details?id=com.adjust.insights&hl=en
https://itunes.apple.com/us/app/adjust-insights/id1125517808?mt=8
https://play.google.com/store/apps/details?id=com.adjust.insights&hl=en
https://itunes.apple.com/us/app/adjust-insights/id1125517808?mt=8
https://play.google.com/store/apps/details?id=com.adjust.insights&hl=en
https://itunes.apple.com/us/app/adjust-insights/id1125517808?mt=8

If this is the case, please provide us with your test device's Google Advertising ID (Android) or IDFA (iOS). We'll use it to debug
the install. Use our Adjust Insights app (Android | iOS) to extract the device's Google Advertising ID.

Step 4I: Cordova iOS App

Follow the same steps as in Section 4B after you:

Build in Cordova
Import Build in Xcode

NOTE: if the attribution response is 'untrusted', please stop where you are in the process. Do not publish the app, and contact
the Adjust Mobile Security Team. We'll need to take a look at your integration and investigate further.

If this is the case, please provide us with your test device's Google Advertising ID (Android) or IDFA (iOS). We'll use it to debug
the install. Use our Adjust Insights app (Android | iOS) to extract the device's IDFA.

On Play Store Warnings
Upon uploading your app to the Play Store, you may encounter the following warning:

This App Bundle contains native code, and you've not uploaded debug symbols. We recommend you upload a symbol
file to make your crashes and ANRs easier to analyze and debug.

The lack of debug symbols is intended, and the warning may be safely ignored.

Contact
If you have any issues, please contact your Account Manager. They will help you immediately debug any issues.

If you have any suggestions on improving the testing process, please contact your Account Manager as well. We truly
appreciate any comments that would make life easier for both of us.

– Adjust Mobile Security Team

https://play.google.com/store/apps/details?id=com.adjust.insights&hl=en
https://itunes.apple.com/us/app/adjust-insights/id1125517808?mt=8
https://play.google.com/store/apps/details?id=com.adjust.insights&hl=en
https://itunes.apple.com/us/app/adjust-insights/id1125517808?mt=8

